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Supported with funding from NASA’s Balloon Program Office, a mathematical model is being developed for the
analysis of large scientific balloons. Initially focusing on fully inflated and partially inflated zero-pressure natural-
shape balloons, our approach has proven to be adaptable to a variety of problems that lend themselves to a
variational formulation with an optimization-based solution process. Our model is implemented into a program
called EMsolver.

We present a collection of membrane problems for gossamer structures, including natural-shape balloons,
pumpkin balloons, a solar neutrino balloon, and an NGST-like sunshield. In each of these applications, the
structure consists of membrane elements and reinforcing tendons. Wrinkling in the membrane is modeled via
A. C. Pipkin’s energy relaxation approach.



Nomenclature

S - complete balloon shape.
Ω - complete reference configuration.
FI - discretized configuration in IR3

FI - flat unstrained reference configuration in IR2.
T - a triangle in FI

T - a triangle in FI.
ng - number of gores in a complete shape.
rB - bulge radius for the ideal pumpkin gore.
ET - total energy of the balloon system.
EP ��

R

Ω�

1
2bz2� p0z�k �d�S - hydrostatic pressure potential energy.

E f �
R

S wf zdA - gravitational potential energy of the film.

Et � ngwt

R Lt

0 τ�s� �k ds - gravitational potential energy of the load tendons.
Etop � wtopztop - gravitational potential of top fitting.
S�t � ng

R

Γ W �

t �ε�ds - relaxed tendon strain energy.
S�f �

R

ΩW �

f dA - relaxed film strain energy.

d�S � NdS, N is the unit outward normal to S .
dS is surface area measure on S .
dA - area measure in the reference configuration,
ds - arc length measure along Γ,
τ�s� � IR3 is the position of the load tendon.



Variational Formulation and Optimization-Based Solution
See Baginski & Collier (2001)

Total potential energy:

E�

T �S� � EP�E f �Et �Etop�S�t �S�f

EP - hydrostatic pressure potential (lifting gas)
E f - gravitational potential energy of film S�f - relaxed strain energy of film

Et - gravitational potential energy of load tendons S�t - relaxed strain energy of load tendons
Etop - gravitational potential energy of top fitting S - membrane

Optimization Problem �

For S � C ,
minimize: E�

T �S�

subject to: �G�S� ��0

EMsolver uses Matlab’s fmincon to solve a discretization of Problem �.

C - class of shapes; G - constraints



Design parameters and related constants for a ULDB Phase IV balloon. Comparing a

standard gore design and a supergore design.

Description ULDB
Top fitting weight (N) wtop 831

Cap weight density (N/m2) wc 0.18387
Cap thickness (µm) hc 10.8

Film weight density (N/m2) wf 0.3440
Film weight with caps (N) 16,562

Film thickness (µm) hf 38.1
Youngs modulus (MPa) E 404.2

Poisson ratio ν 0.825
Tendon weight density (N/m2) wt 0.094

Tendon weight (N) 4,144
Tendon stiffness (MN) Kt 0.651

Payload (N) Lbot 20393
Specific buoyancy (N/m3) b 0.0763

Number of gores ng 290
Cap length (m) lc 49.45

Constant pressure (Pa) p0 135
Target volume (mcm) 0.515

Curved edge length (m) Ld 152.03
Center gore length (m) Lc 152.02

Pumpkin generator length (m) Lp 150.02
Length of tendon (m) Lt 147.57



Wrinkling and film strain energy relaxation

F. Baginski & W. Collier
See Collier (2000) & Baginski & Collier (2001)

Relaxed membrane strain energy density:
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0� δ1 � 0 and δ2 � 0 (slack)

1
2tEδ2

2� µ1 � 0 and δ2 � 0 (wrinkled)
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2tEδ2

1� µ2 � 0 and δ1 � 0 ( wrinkled)
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Relaxed membrane energy:
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Ω
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Λ1-taut, Λ2-slack, other - wrinkled

δ1�δ2-plane W �

f - quasi-convexification of Wf
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The Pumpkin Balloon
F. Baginski & W. Schur

Section of pumpkin gore Pumpkin Balloon
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Averaged principal stresses of natural and pumpkin shapes

(a) σ̄1�s�� meridional stress (b) σ̄1�s�
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(c) σ̄2�s�� hoop stress (d) σ̄2�s�
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Max. principal stress µ2 vs. bulge radius rB for ng-gores.

F. Baginski & M. Barg

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
4

5

6

7

8

9

10

11

12

13

14

r
B

M
P

a
n

g
=200

n
g
=220

n
g
=255

n
g
=290

n
g
=350

n
g
=375

n
g
=400



“Molded” Pumpkin Supergore

F. Baginski & W. Schur

Molded Pumpkin Supergore Flat unassembled configuration



Containment vessel for a solar neutrino detector
L. Cadonati & F. Baginski
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Tendon/gore configuration in Borexino

Top mooring rope to
bottom endcap 

Bottom mooring rope to
top endcap 
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EMsolver and ABACUS Results Comparison

Constant Pressure Buoyant Force + Constant Pressure
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NGST-like sunshield
F. Baginski & S. Vezina

Principal strains
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Wrinkle Pattern
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Nonuniqueness of Ascent Shapes
Baginski (2002)
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